
Functional Geometry

Peter Henderson
Department of Electronics and Computer Science
University of Southampton
Southampton, SO17 1BJ, UK
p.henderson@ecs.soton.ac.uk
http://www.ecs.soton.ac.uk/~ph

October, 2002

Abstract. An algebra of pictures is described that is suÆciently powerful to denote
the structure of a well-known Escher woodcut, Square Limit. A decomposition of the
picture that is reasonably faithful to Escher's original design is given. This illustrates
how a suitably chosen algebraic speci�cation can be both a clear description and a
practical implementation method. It also allows us to address some of the criteria
that make a good algebraic description.

Keywords: Functional programming, graphics, geometry, algebraic style, architec-
ture, speci�cation.

1. Background

In 1982, when the original version of this paper (6) was written, com-
puters, computer science and functional programming were all a lot
less powerful than they are today. The idea that one could write an
algebraic description, embed it in a functional program, and execute
it directly was not new. But it was not then considered a practical
programming technique. Now we know better and many examples exist
of how practical it can be to simply write denotations of what is to be
constructed, rather than to write algorithmic descriptions of how to
perform the construction.

A picture is an example of a complex object that can be described
in terms of its parts. Yet a picture needs to be rendered on a printer or
a screen by a device that expects to be given a sequence of commands.
Programming that sequence of commands directly is much harder than
having an application generate the commands automatically from the
simpler, denotational description. Others have shown that it can be
practical to directly execute denotations in other complex domains such
as music (7), animation (3, 8, 11) and documents (9). Others have also
developed the application of these ideas to more complex pictures (1, 2,
4). It is appropriate now to draw some general conclusions from those
studies. There is no need to have read the 1982 Functional Geometry

c 2002 Kluwer Academic Publishers. Printed in the Netherlands.

funcgeo2.tex; 16/10/2002; 13:53; p.1

2 Peter Henderson

Figure 1. The pictures f, rot(f), flip(f) and rot(flip(f))

Figure 2. above(f,f), beside(f,f), above(beside(f,f),f) and rot45(f)

paper (6) in order to understand this one, but for comparison that
earlier paper is available at the URL given in the references.

2. Basic Operations

The operations we will use to build pictures will be de�ned precisely
in Section 5. Here we will de�ne them informally. The algebra we will
use will allow us to place these pictures next to each other in frames.
The frames on which the pictures are based will be used to position
each component. The operations we will de�ne are a mixture of general
operations and one which is more specialised, in a way that will become
clear when we study the Escher woodcut in the next section.

Consider the four pictures shown in Figure 1. The leftmost picture
is the outline of a letter. It is located within a frame, but we do not
consider the frame to be part of the picture. Rather it shows the extent
of the picture. If we say that f denotes the leftmost picture, then we
denote by rot(f) the same picture rotated anticlockwise through a
right angle. Consequently, rot(rot(f)) would denote that the picture
rotated through a full 180 degrees. When pictures are rotated, we will
always rotate them in a standard, anticlockwise direction.

We denote by flip(f) the picture f ipped through its vertical
centre axis. Figure 1 demonstrates the use of rot and flip. The ab-
straction which we have used, the object that we are referring to as a
picture, has content made up of some smaller graphical objects (here,
just line segments). The position, size and orientation of the picture is
not part of its content. This is an essential abstraction that makes the

funcgeo2.tex; 16/10/2002; 13:53; p.2

Functional Geometry 3

Figure 3. Square Limit to depth 3

description of pictures of the sort shown here very much simpler than
they might otherwise be. The frame in which a picture is placed will
be referred to as its locating box.

So far we have only used the ability to rotate and ip pictures
within the box upon which they are based. Much more interesting is the
ability to lay these pictures next to each other in order to form more
complex pictures. We introduce two operations, above and beside, that
respectively place pictures adjacent to each other vertically and hori-
zontally. These constructions are shown in Figure 2. The construction
above(p,q) is the picture that has p in the upper half of its locating
box and q in the lower half. Similarly, the construction beside(p,q)

is the picture that has p in the left half of its locating box and q in the
right half.

The rightmost picture in Figure 2 shows the most elaborate of the
operations we will need. The picture rot45(f) is shown superimposed
with the outline of its original locating box. Unlike rot which rotates a
picture about its centre, through a right angle, rot45 rotates a picture
about its top left corner, through 45 degrees, also anticlockwise. It also

funcgeo2.tex; 16/10/2002; 13:53; p.3

4 Peter Henderson

Figure 4. The basic �sh

reduces the picture is size by
p
2, so that the diameter of its original

locating box lies along the top edge of the rotated picture's locating
box. This operation is de�ned precisely in Section 5. It is rather speci�c
to the Escher picture we are going to construct.

One �nal operation over(p,q) overlays one picture p directly on
top of the other picture q, so that the boxes on which they are based
are collocated. We will see examples of that in the next section.

3. The Escher Woodcut - Square Limit

Escher's picture of interlocking �shes is reproduced in outline in Figure
3. The original is of course more elaborate in terms of its shading and
various other artistic properties. The structure is all that interests us
here. Each �sh in the picture has the same basic shape, reoriented and
resized in such a way that it neatly interlocks with its neighbours. Es-
cher made many such pictures. This picture is of reasonable complexity
compared with his others and presents a signi�cant challenge. It was
chosen because the book in which it is reproduced (10) also contains
some of Escher's early drafts and sketches for it, and in particular a
geometric presentation of the tessellation he was planning to use.

In the original 1982 paper I chose to start building the picture from
smaller parts, rather than from a whole �sh. The reasons for this will
be discussed in Section 4. It seems clear that Escher did not do this,
again for reasons I will discuss in that Section. Rather, he designed a
single �sh with the necessary interlocking features that establish the
tiling property that the picture requires. There are lessons here for how
we think about structuring computations and how we design software.
These lessons will be returned to in Section 6.

The basic �sh is shown in Figure 4. The �sh is drawn inside a locating
box whose corners have been indicated with chevrons (not part of the
picture).

Suppose that fish denotes the basic �sh. Figure 5 is constructed us-
ing over(fish, rot(rot(fish))). This construction exempli�es one
constraint on the design of the �sh, that two �sh laid side to side like

funcgeo2.tex; 16/10/2002; 13:53; p.4

Functional Geometry 5

Figure 5. The basic �sh, twice

Figure 6. The basic �sh, three times. The tile t.

this must �t each other. As an artist, Escher must have spent some time
experimenting with di�erent curves in order to achieve the appearance
that he wanted. What I have done is to read o� his coordinates from
the hand drawn prototypes published in (10).

More remarkably, three �sh �t together in a triangle, as in Figure
6. The construction for this picture is

t = over(fish, over(fish2, fish3))

where

fish2 = flip(rot45(fish))

fish3 = rot(rot(rot(fish2)))

Here we see that fish2, which is at the top of the picture, is obtained
by rotating the basic �sh anticlockwise through 45 degrees using rot45
and then ipping it through its vertical centre axis using flip. Recall
that rot45 scales the picture as described in the previous Section. The
third �sh fish3 is obtained from fish2 by rotating it clockwise through
a right angle, obtained here by making three anticlockwise rotations.

Figure 7. The basic �sh, four times. The tile u.

funcgeo2.tex; 16/10/2002; 13:53; p.5

6 Peter Henderson

Figure 8. quartet(u,u,u,u)

Figure 9. v = cycle(rot(t))

In fact the construction in Figure 6 gives us the �rst of two square
tiles that we will use to construct the �nal picture. We call this tile t.
The second square tile we will need is u. This tile is shown in Figure 7.
Its construction is

u = over(over(fish2, rot(fish2)),

over(rot(rot(fish2)), rot(rot(rot(fish2))))

Basically, we take the 45 degree rotated �sh from earlier (that has
conveniently reduced in size by

p
2) and overlay four copies of it. This

new interlocking is a third constraint on the design of the basic �sh
by Escher. In fact, the constraints that we have depicted in Figures
5, 6 and 7 induce lower level constraints upon the line segments that
constitute the outline of the �sh. In section 4 we will show how the
outline of the �sh is the same three-section line segment reproduced
four times.

We begin to see how these tiles �t together in Figure 8, which is
described by above(beside(u,u),beside(u,u)). In fact the construc-
tion in Figure 8 uses a utility function that we de�ne as follows

quartet(p,q,r,s) = above(beside(p,q),beside(r,s))

Another utility function that we will make use of is

funcgeo2.tex; 16/10/2002; 13:53; p.6

Functional Geometry 7

Figure 10. quartet(v,v,v,v)

cycle(p) = quartet(p, rot(p),

rot(rot(p)), rot(rot(rot(p))))

We can see this function deployed in Figure 9. This is probably the �rst
construction that begins to look a bit like Escher's eventual woodcut,
having an arrangement of �sh that includes resizing and reorientation.
It doesn't, however, quite demonstrate all the constraints in use. That
is remedied in Figure 10, which should be self explanatory. Now we are
in a position to begin building the �nal picture. The remainder of the
construction de�nes a pair of equations that capture the essence of the
woodcut.

The constructions we are about to make were obtained by detailed
inspection of Escher's original picture. They are not the only possible
decomposition of that picture but, to a computer scientist, they are the
most obvious.

First we construct a component that is going to appear on the side
of the �nal picture. Figs. 11 and 12 show the �rst two levels of this
construction side1 and side2. These constructions are de�ned by

side1 = quartet(blank,blank,rot(t),t)

side2 = quartet(side1,side1,rot(t),t)

and as such are speci�c instances of the general construction

side[n] = quartet(side[n-1],side[n-1],rot(t),t)

where side[0] = blank.
If we are using a lazy language, we can simply write

side = quartet(side,side,rot(t),t)

funcgeo2.tex; 16/10/2002; 13:53; p.7

8 Peter Henderson

Figure 11. side1 = quartet(blank,blank,rot(t),t)

Figure 12. side2 = quartet(side1,side1,rot(t),t)

and rely upon the code that eventually draws the picture only reaching
a �nite distance into this in�nite object. It only needs to build the parts
of this object that are large enough to be visible on the output device.

The second construction we need is shown in Figs. 13 and 14. Here
we have the parts which will comprise the corners of the �nal picture,
to depths 1 and 2 respectively. They are de�ned by

corner1 = quartet(blank,blank,blank,u)

corner2 = quartet(corner1,side1,rot(side1),u)

Careful inspection of these two �gures will con�rm that this is in-
deed their description. Indeed, it was these precise descriptions which
generated the pictures as they appear here.

These two equations are speci�c instances of the equation

corner[n] = quartet(corner[n-1],side,rot(side),u)

where we have assumed both corner[0] and side[0] are blank. Again,
a lazy language would allow us to write

corner = quartet(corner,side,rot(side),u)

In order to build the �nal picture as shown in Figure 3, we need to be
able to construct an arrangement of nine tiles. We call this arrangement
nonet. It is de�ned as follows.

funcgeo2.tex; 16/10/2002; 13:53; p.8

Functional Geometry 9

Figure 13. corner1 = quartet(blank,blank,blank,u)

Figure 14. corner2 = quartet(corner1,side1,rot(side1),u)

nonet(p, q, r,

s, t, u,

v, w, x) =

above(1,2,beside(1,2,p,beside(1,1,q,r)),

above(1,1,beside(1,2,s,beside(1,1,t,u)),

beside(1,2,v,beside(1,1,w,x))))

Here we have used slightly more elaborate versions of above and beside.
The additional parameters are numbers, m and n say, and the subpic-
tures are arranged in the ratio m : n. The function nonet lays out its
nine arguments in three rows of three.

Using these constructions we can build a simple version of Square
Limit, shown in Figure 15. This takes the detail down to level 2 and
has the de�nition

squarelimit2 =

nonet(corner2, side2, rot(rot(rot(corner2))),

rot(side2),u,rot(rot(rot(side2))),

rot(corner2),rot(rot(side2)),rot(rot(corner2)))

Again, careful inspection of the picture will con�rm this de�nition.

funcgeo2.tex; 16/10/2002; 13:53; p.9

10 Peter Henderson

Figure 15. Square Limit to depth 2, squarelimit2

Figure 16. Drafting pattern to depth 2

funcgeo2.tex; 16/10/2002; 13:53; p.10

Functional Geometry 11

Figure 17. The original tiles, p; q; r; s, making an approximation of tile t

Figure 16 shows the pattern of triangles in which the �sh for squarelimit2
are arranged. In fact, this picture was drawn with the same equations
as squarelimit2, but with the �sh simply replaced by a triangle.

The �nal picture is similar, it just uses one more level of detail. It is
shown in Figure 3. The general description of Square Limit is therefore

squarelimit =

nonet(corner, side, rot(rot(rot(corner))),

rot(side),u,rot(rot(rot(side))),

rot(corner),rot(rot(side)),rot(rot(corner)))

4. Other Descriptions

In the 1982 version of this paper, rather than start with a whole �sh,
four basic square tiles similar to those shown in Figure 17 were used.
The tiles p, q, r, s are shown in an arragement which approximately
makes up the tile t (see Figure 6). The only di�erence is that the �sh
are not whole. If we also de�ne u=cycle(rot(q)), where q is the top,
right tile in Figure 17, we can now construct an approximation to the
�nal picture by using this t and this u, in the equations which de�ne
squarelimit.

The new, square starting tiles p, q, r, s work because the bits of
�sh missing from the edges of each tile are included on the edges of the
other tiles which will abut them. The edge of the �nished picture will be
incomplete, of course, but this may be more faithful to Escher's original
as it appears in (10). However, there were other reasons for choosing
these tiles, rather than a whole �sh, as a starting point. Principally,
they avoid the need for a rotation through any angle other than a right
angle. This greatly simpli�es the computation and means that the 1982
picture could be calculated using 16-bit �xed point numbers. It also
avoids the problem of any line in the output being drawn twice, which
on the graph plotters and high quality (dot-matrix) printers which were
available at the time, had an unacceptable visual e�ect.

funcgeo2.tex; 16/10/2002; 13:53; p.11

12 Peter Henderson

Figure 18. The four identical segments which comprise the outline of a basic �sh

From the drafts Escher made of the picture, especially those in which
he was experimenting with the shape of the �sh, his design was of a
�sh which had the necessary properties for tiling the plane. The four
original tiles shown in Figure 17 had no part in his thinking.

In fact, the design of the �sh can be analysed more closely than we
have so far attempted. Figure 18 shows the basic �sh again, superim-
posed with four copies of a line segment which shows how its outline
is made up. Also superimposed upon the �sh is a triangle to show the
path which these four line segments follow. Along the bottom of this
picture is the basic segment. That segment is repeated, rotated through
a right angle, up the left hand side of the picture, thus making up the
entire left-hand side of the �sh. The segment is repeated again, twice,
to make up the right-hand side of the �sh. These two repetitions are
mirror images of the initial segment, which have been rotated 45 degrees
and reduced by

p
2. In fact, if s is the segment along the bottom of the

picture in Figure 18, then the entire outline is generated by

beside(rot(s),

over(s, over(rot45(flip(rot(s))),

rot(rot(rot45(flip(rot(s))))))))

This little bit of geometry explains why the �shes �t together as they
do.

It also explains why there is a mysterious triangle appearing in the
pictures throughout this paper, from Figure 5 onwards. The triangle
can be seen distinctly in Figure 18, under the right wing of the �sh. To
disguise it somewhat, two short lines have been placed under the wing.
These can be seen most clearly in Figures 5 and 6, and have probably
worried the observant reader. When the pictures are composed, these
short lines appear to make up extensions to the wings of other �sh, or
as something (water?) in between them. In constructing the original
woodcut, Escher used a little artistic licence and incorporated these
triangles as continuous extensions of the �sh wings. This means that

funcgeo2.tex; 16/10/2002; 13:53; p.12

Functional Geometry 13

picture

a

b

c

0

Figure 19. The basis vectors

not all the �sh in the woodcut have identical outlines. In fact there are
four �sh, depending on whether either of the wings have been extended,
or not.

This is a third problem which could be avoided by starting with
the tiles in Figure 17. The triangles, which are shown in Figure 17,
were actually eliminated from these tiles in the 1982 paper and hence
from the �nal picture. Notwithstanding this visual improvement, the
construction given in this paper is to be preferred, not least because
the original intention of the artist was probably to tile the plane with
a single �sh.

5. Implementation Issues

The key conceptual idea behind Functional Geometry is that we have
abstracted completely from size and absolute location. Each picture
is described in terms of subpictures and their relative locations. The
implementation, on rendering the picture, must work out from this
description, the exact size and the exact location of each part of the
picture.

We can best de�ne this by describing what a picture denotes. Let us
de�ne a picture as a function which takes three arguments, each being
two-space vectors and returns a set of graphical objects to be rendered
on the output device. The vector arguments are as shown in Figure 19.
The picture p(a,b,c) will be drawn in a box bounded by b and c, with
its bottom left-hand corner at position a. This choice of basis vectors is
not the only one we could have made, but it does make the operations
we must de�ne very easy. For example

over(p; q)(a; b; c) = p(a; b; c) [q(a; b; c)

de�nes the fact that over(p; q) is the picture which includes all the
objects of p with all the objects of q.

All the basic operations can be de�ned in this way.

blank(a; b; c) = fg

funcgeo2.tex; 16/10/2002; 13:53; p.13

14 Peter Henderson

beside(p; q)(a; b; c) = p(a; b=2; c) [q(a+ b=2; b=2; c)

above(p; q)(a; b; c) = p(a; b; c=2) [q(a+ c=2; b; c=2)

rot(p)(a; b; c) = p(a+ b; c;�b)

flip(p)(a; b; c) = p(a+ b;�b; c)

rot45(p)(a; b; c) = p(a+ (b+ c)=2; (b + c)=2; (c � b)=2)

which gives a precise semantics to the operations we have used in the
earlier part of this paper. For completeness we de�ne the remaining
two operations, which should be obvious

beside(m;n; p; q)(a; b; c) =

p(a; b �m=(m+ n); c) [q(a+ b �m=(m+ n); b � n=(m+ n); c)

above(m;n; p; q)(a; b; c) =

p(a+ c � n=(m+ n); b; c �m=(m+ n)) [q(a; b; c � n=(m+ n))

The de�nition in terms of sets of graphical objects isn't quite what
we want for implementation of the rendering. Rather, we want to draw
each basic graphical object (here, just line segments) as we construct
it and rely upon the fact that it doesn't matter if we draw the same
object twice because the rendering engine will take care of that.

In fact, we want to be able to draw these pictures even if the set of
graphical objects that they denote is in�nite. So the implementation
will need to implement some rule such as p(a; b; c) = fg, if jb+ cj < �,
where � is some dimension considered too small to draw.

Of course, we haven't de�ned how basic pictures (such as the �sh in
Figure 4) should be created. In the implementation used to create the
pictures in this paper, the �sh is made up of about 30 bezier curves
and is implemented as an object which can calculate the parameters of
those beziers given the parameters a; b; c. By avoiding the use of �lls, it
is not necessary to be concerned with the order in which the graphical
objects are rendered.

6. General Considerations

The basic idea exempli�ed in this paper is simple. Denotations of ob-
jects are easier to understand than algorithmic descriptions of how to
build those objects. Here we have used a graphical object, the Square
Limit picture, and shown that a certain decomposition of it is both a
clear description of its structure and suÆcient information to actually
drive the device that draws the picture.

The consequence of thinking in terms of what objects denote is that
the operations which we de�ne form an algebraic system. The algebra

funcgeo2.tex; 16/10/2002; 13:53; p.14

Functional Geometry 15

of pictures enjoys rules which are useful in transforming descriptions.
For example

rot(rot(rot(rot(p)))) = p

rot(above(p; q)) = beside(rot(p); rot(q))

rot(beside(p; q)) = above(rot(q); rot(p))

flip(beside(p; q)) = beside(flip(q); f lip(p))

There are many more rules of this sort. It seems there is a positive
correlation between the simplicity of the rules and the quality of the
algebra as a description tool.

The operations de�ned above and about which we have produced
some rules are clearly generic in that they would be generally applicable
to the construction of many pictures. Not so generic is the operation
rot45, which is almost certainly speci�c to the construction behind
Square Limit. The rot45 operation is not as simple as its name sug-
gests nor as any of the other, more generic, operations. In fact it does
something quite odd, rotating the picture about its top left hand corner,
rather than about its centre. The consequence of this is that it doesn't
enjoy simple rules. For example, while

rot45(rot45(p)) 6= rot(p)

a more complex rule, which approximates what we might have ex-
pected, is

above(blank; rot45(rot45(p))) =

above(quartet(blank; blank; rot(p); blank); blank)

This indicates that two rot45s actually move the picture p out of the
box on which it is based, into a box above that. Also, since each reduces
the picture by

p
2, their combination actually halves the size of p.

This analysis suggests that rot45 is not the kind of operation we
would include in a general algebraic language for geometry. Rather,
we would de�ne more fundamental operations for scaling, rotation
and translation and allow the user to de�ne rot45 for this speci�c
application.

Others have developed the application of these ideas to more com-
plex pictures (1, 2, 4). In particular, Chailloux and Cousineau (2),
having repeated the Square Limit construction, also do Escher's Circle
Limit, based on considerably more complex transformations than are
discussed here.

Algebraic structures, along these lines, have been developed for mu-
sic by Hudak et al. (7) and for animation by Elliott and Hudak (3, 8),

funcgeo2.tex; 16/10/2002; 13:53; p.15

16 Peter Henderson

and by Thompson (11). Each has shown that the denotation is suÆcient
to the construction of the eventual artifact (music, or animation).

More recently, contemporary approaches to document structure has
tended to the denotational, when described with contemporary tech-
nologies such as XML. More speci�cally, the denotations can be manip-
ulated with languages such as XSLT, which are essentially declarative,
as Kay (9) explains. The general considerations which algebraic ap-
proaches require do seem to scale up to realistic applications, especially
where the application domain is fairly uniform.

7. Conclusions

Having deconstructed Escher's woodcut Square Limit, as illustrated in
(10), we have reconstructed it using a denotational metaphor. In partic-
ular, we have viewed pictures as hierarchical compositions of graphical
objects and shown how some simple operations can together give an
algebra powerful enough to both describe what a picture denotes and
to drive an application which can draw that picture.

This idea is not new. It was published in 1982, but even then it was
based on contemporary views of what was good practice in declarative
systems. Since that time, the idea has been applied to many more
complex domains and, as time has progressed, does seem to be one
which has come to be applicable on a more practical scale.

Whether Maurits Escher would approve of the deconstruction of his
elegant picture is, sadly, something we can only wonder about.

8. Acknowledgements

I am grateful to many people who have commented on earlier drafts
of this paper and made useful suggestions. These have done much to
improve the presentation. These helpful people include Olivier Danvy,
Matthew James Henderson, Jerzy Karczmarczuk, Julia Lawall, Hen-
ning Korsholm Rohde and Peng Fei Xue. Many thanks.

The pictures were drawn by a Java program which generated postscript
commands directly. The Java was written in a functional style (using
static methods) so that the de�nitions which were executed were ex-
actly as they appear in the paper, with the addition of the occasional
semicolon.

funcgeo2.tex; 16/10/2002; 13:53; p.16

Functional Geometry 17

References

Abelson, Harold, Gerald Jay Sussman and Julie Sussman. Structure and In-
terpretation of Computer Programs. The MIT Press (1985, second edition
1996)

Chailloux, Emmanuel and Guy Cousineau. Programming Images in ML. Proceedings
of the ACM SIGPLAN Workshop on ML and its Applications (1992)

Elliott, Conal and Paul Hudak. Functional Reactive Animation. Proceedings of the
ACM SIGPLAN International Conference on Functional Programming (ICFP
'97)

Finne, Sigbjorn and Simon Peyton-Jones. Pictures: A simple structured graphics
model. In Glasgow Functional Programming Workshop, Ullapool, (July 1995)

Henderson, Peter. Functional Programming - Application and Implementation.
Prentice-Hall, (1980)

Henderson, Peter. Functional Geometry. Proceedings of 1982 ACM Sym-
posium on Lisp and Funtional Programming, 179{187, ACM, (1982) (see
http://www.ecs.soton.ac.uk/~ph/funcgeo.pdf)

Hudak, Paul, Tom Makucevich, Syam Gadde and Bo Whong. Haskore Music No-
tation - An Algebra of Music. Journal of Functional Programming, vol. 6, no. 3,
465{483, (1996)

Hudak, Paul. Modular Domain Speci�c Languages and Tools. Proceedings: Fifth
International Conference on Software Reuse, IEEE Computer Society Press, 134{
142, (1998)

Kay, M. XSLT Programmer's Reference. 2nd Ed, Wrox Press Ltd., ISBN:
1861005067, (April 2001)

Locher J.L. (ed) The World of M.C.Escher. Harry N. Abrahams Inc., New York,
ISBN 810901012, (1971)

Thompson, Simon. A Functional Reactive Animation of a Lift using Fran. Journal
of Functional Programming, vol. 10, no. 3, 245{268, (2000)

funcgeo2.tex; 16/10/2002; 13:53; p.17

funcgeo2.tex; 16/10/2002; 13:53; p.18

